
March 2007 93

W E B T E C H N O L O G I E S

C onventional wisdom holds
that the service-oriented
architecture approach is the
silver bullet for all IT prob-
lems nowadays. According to

this view, SOA will lead to near-per-
fect applications in which every func-
tion is implemented as a service, and a
service can call any other service to
implement its functionality. This
includes not only services that provide
business functionality, but also non-
functional services for logging, moni-
toring, data transformation, and so on.

However, if every service is free to
call every other service remotely, many
remote invocations that often are
nontransactional can freely mix syn-
chronous and asynchronous connec-
tions at runtime. This “fractal”
situation is extremely fragile and
demands close examination, leading
me to issue a warning—“naïve SOA
considered harmful”—akin to that in
Edsger Djikstra’s seminal paper, “Go
To Statement Considered Harmful”
(Comm. ACM, Mar. 1968, pp. 147-
148).

SOA’S PROMISE
Services in their simplest form

involve two parties: a provider that

exposes and provides services, and a
requester that uses services to achieve
its goals (for simplicity, I equate ser-
vices with Web Services Description
Language operations). A service
provider can serve many service
requesters; a service requester can uti-
lize many service providers. Execution
concurrency is therefore inherent in
the concept and implementation of
services.

As service providers and requesters
typically reside in their own comput-
ing environment, their data and exe-
cution state are independent of each
other, making services in general a het-
erogeneous, autonomous, and dis-
tributed system. SOA reduces the
common technology between service
providers and requesters to a shared
communication infrastructure as well
as a widely accepted service interface
language and message binding at exe-
cution time.

This independence leads to talk about
composable systems somewhat akin
to Lego blocks (J. Bloomberg, “The
Lego Model of SOA,” ZapThink, 11
Dec. 2006; www.zapthink.com/report.
html?id=ZAPFLASH-20061212).
Service composition enables service
requesters to invoke existing services

provided by different service providers
in a specific order to obtain a result that
no single service would be able to offer
on its own.

Providers can achieve service com-
position by programming language
code or by explicitly defining the ser-
vice invocation order, preferably in a
declarative approach. A predominant
standard in this space is the Business
Process Execution Language, which
developers use to implement service
composition.

Declarative modeling enables busi-
nesses to adapt to changing needs by
loosely coupling services. At any point,
the service composition, as well as the
service providers used in the composi-
tion, can be changed without altering
the service requester’s IT infrastructure;
only the declarative composition defi-
nition requires adjustment. This in turn
lets businesses quickly modify their
internal operations to adjust to market
activity without being held back by
internal IT development projects or
long software vendor release cycles.

SOA thus ideally makes it possible
for businesses to achieve sufficient per-
formance, reliability, and dependabil-
ity on a system level. Uniformity in
service design and implementation
leads to a pattern in which “every-
thing should be a service”—not only
the implementation of business func-
tionality, but also system functional-
ity like logging, monitoring, or data
transformation.

ONE POSSIBLE REALITY
A world full of services that can call

each other freely, while remaining flex-
ible and performing at a high level, is
certainly desirable for many enter-
prises. However, reality is not like
this—yet.

While a business may choose to
implement many services from scratch,
others are likely already in place, at
least in principle, through packaged
applications like enterprise resource
planning systems. In this case, the task
is not to implement services but to
“wrap” or abstract from the packaged
application implementation and make
its functionality available as services.

The Fractal Nature
of Web Services
Christoph Bussler
Cisco Systems

Applying SOA concepts

to the runtime structure

can be problematic.

94 Computer

W E B T E C H N O L O G I E S

Some enterprises take a standard-
ized approach to service invocation
that dictates all communication be-
tween services occurs over asynchro-
nous messaging middleware like a
queuing system. This means that if
one service invokes another, the invo-
cation will take the form of a request
message and a return message in var-
ious request and response queues
inside the system.

Due to overall IT system complex-
ity, a logging and monitoring infra-
structure is essential from both a
system- and business-monitoring view-
point. This infrastructure supports the
need to examine the processing state
at any point as well as postmortem
analysis in case of a failure.

As the SOA approach is indepen-
dent of a particular business domain,
a generic logging service and a generic
monitoring service can be imple-
mented for all services. All services
invoke these nonfunctional services to
provide timely and sufficient runtime
information.

Because not all services are written
from scratch, but also encapsulate
existing systems, data mismatches
between services must be addressed
through a process that transforms data
types and models into one another
without modifying or losing the data
semantics. Such data transformation
can be implemented as another non-
functional service (R. Schmelzer and J.
Bloomberg, “The Role of Transfor-
mation Services in SOA,” ZapThink, 3
Oct. 2006, www.zapthink.com/report.
html?id=ZAPFLASH-2006103).

A pattern thus emerges in which
every business and service functional-
ity is implemented as a service in itself,
sharing the same communication
infrastructure and following the same
service implementation principles.

MICROANALYSIS
Consider a classic single-service invo-

cation in which S1 provides an input
message to service S2 and expects a
result back from service S2 after the lat-
ter finishes executing. If nothing else
were to occur, this request-reply sce-
nario results in two queue messages,

one representing the request of S1 to
S2 and a second representing the result
from S2 to S1.

Each message must be put into and
retrieved from a queue (or two, a
request queue and a response queue),
resulting in four queue operations. In
the worst-case scenario of the queu-
ing system being in a separate com-
puting environment, these four queue
operations would result in four
remote invocations.

If the queuing system is not only per-
sistent but transactional, each queue
operation is a transaction. In general,
as the services internally keep state,
enqueuing or dequeuing a message
becomes a distributed transaction
across the services and the queuing sys-
tem, with the messages stored on disk.

In summary, then, a service invoca-
tion thus far results in four distributed
and remote transactions.

Service requester and service
provider data models often differ. For
example, a service requester might
deal with purchase orders defined by
Electronic Data Interchange standards
while a service provider might imple-
ment purchase orders according to
RosettaNet specifications. In this case,
either the service requester or provider
must transform the data type from
EDI to RosettaNet (and back for the
acknowledgment messages).

Data transformation is imple-
mented as a service that must be called
twice: once for the request message
and once for the response message. As
each request-reply service invocation
results in four invocations, the two
data transformation invocations add
eight remote invocations; in this case,
the additional remote invocations are
nontransactional because data trans-
formation is typically idempotent.

Summarizing again, we now have
four distributed, remote transactions
plus eight remote invocations for data
transformation for the scenario in
which S1 calls S2.

Each service follows a bare-mini-
mum logging and monitoring strategy.
A service requester logs a service invo-
cation before and after the invocation,
while a service provider logs its invo-
cation right after the invocation starts
and right before the invocation fin-
ishes. Logging information includes
parameter values, the invocation con-
text, and other elements.

Each logging is a one-way service
invocation, resulting in a total of eight
remote invocations: four by the ser-
vice requester and four by the service
provider, two for each queue opera-
tion. The same is true for the moni-
toring service. Thus, an additional
eight remote invocations occur.

In conclusion, the scenario in which
S1 calls S2 involves four distributed
transactions and 24 remote invoca-
tions. The process generates a total of
14 messages: two for the invocation
and result data, four for the two trans-
formation invocations, four for the
four logging invocations, and four for
the monitoring invocations. This is
considerable effort for a simple
request-reply invocation.

MACROANALYSIS
When considering service composi-

tion, this amount of effort must be
multiplied by the number of services
invoked by the composition. The invo-
cation thus exhibits a fractal struc-
ture—that is, at every level of detail,
the structure repeats itself (http://
en.wikipedia.org/wiki/Fractals).

Service invocation requires logging
and transformation. Transformation
in itself might do some logging for its
own purposes. In general, every service
might call other services, and those
calls are completely hidden behind the
service interface definitions.

With a high number of transactions,
remote invocations, and persistent
messages, infrastructure characteristics
dominate performance. Every addi-
tional service invocation will impact

Service requester
and service provider

data models
often differ.

throughput as it will cause additional
remote invocations and persistent data
store accesses.

Error recovery becomes another big
burden for the naïve service-imple-
mentation scenario. Every time an
invocation breaks, independent of the
reason, at least one asynchronous con-
nection is left hanging; this means, for
example, the invocation takes place—
the message was submitted—but the
result message is not picked up.

This also leads to inconsistent data
states, as the overall service invoca-
tion fails. However, the data states
advance; asynchronously triggered
functionality cannot be rolled back
through transaction demarcation.

With asynchronous communica-
tion, compensation becomes a neces-
sity. If the asynchronous queuing
system is nontransactional, then any
compensation must first determine if a

consistent state has been reached,
leading to the implementation and
invocation of idempotent services.

S ervices that exist as independent
concepts at design time are imple-
mented as independent execution

entities at runtime. Assuming that the
conceptual system structure is equally
useful during execution is a naïve and
potentially dangerous mistake.

Thinking about overall system
structure in terms of independent ser-
vices makes perfect sense given the
paradigm of functionality contain-
ment and loose coupling. However,
applying service concepts to the run-
time structure causes many difficult
problems and can lead to a very com-
plex system.

Instead, applying high-performance
transaction system design criteria

that optimize for runtime properties
like performance, throughput, and
resiliency should be paramount.
“Think SOA, implement HPTS” is an
approach consistent with the Organi-
zation for the Advancement of Struc-
tured Information Standards SOA
Reference Model (www.oasis-open.org/
committees/tc_home.php?wg_abbrev=
soa-rm), which clearly separates
SOA concepts from implementation
technology. ■

Christoph Bussler is a member of the
technical staff at Cisco Systems. Contact
him at cbussler@cisco.com.

March 2007 95

Editor: Simon S.Y. Shim, Department of
Computer Engineering, San Jose State
University; sishim@email.sjsu.edu

To submit a manuscript for peer review,
see Computer’s author guidelines:

www.computer.org/computer/author.htm

Computer

magazine

looks ahead

to future

technologies

• Computer, the flagship publication of the IEEE Computer
Society, publishes peer-reviewed technical content that
covers all aspects of computer science, computer
engineering, technology, and applications.

• Articles selected for publication in Computer are edited
to enhance readability for the nearly 100,000 computing
professionals who receive this monthly magazine.

• Readers depend on Computer to provide current,
unbiased, thoroughly researched information on the
newest directions in computing technology.

Welcomes Your Contribution

